Mechatronics, a key impulse in Upper Austria for bridging scientific research and industrial application.

Brokerage Event Ostrava
September 23rd, 2015

by Dr. Johann Hoffelner
Chief Scientific Officer, Linz Center of Mechatronics GmbH
AGENDA

- LCM – the company
- MECHTRONICS: Bridging Science and Industry
- MECHTRONICS: Bridging Industrial Branches
- WHERE Bridges are built
- EXAMPLE: Software tool HOTINT
LCM – THE COMPANY

• R&D cooperations and services from applied basic research to the final product

• Continuous more than 100 employees, who work in projects for our customers - small enterprises, SMEs to large international groups

• International partner network

• Access to latest findings of applied basic research through our integrated K2 project trail

• International projects – H2020
Industry driven projects: customer – supplier conditions

Projects with international funding (e.g. H2020): partner structure

COMET K2 project trail: national regulations, have to be accepted by all partners, “ACCM project” is running till 12/2017
Mechatronics: Briding Industrial Sectors

- Operators and manufacturers of plant, machinery and equipment
- Suppliers of components for plant, machinery and equipment

...from the following sectors...
Where bridges are built

- Simulation of components, systems & processes
- Customized control systems
 - Model based
- Drive Technology
 - Electrical + Hydraulic
- Sensors and Communication
 - Condition Monitoring, positioning
- Noise and Vibration
 - Fault detection, vibration reduction
EXAMPLE: HOTINT - Open Source Multibody Simulation Software

Why this example in the context of bridging Science and Industry

- HOTINT: “History” and Today
- Basics
- Numerical Solver
- Scientific topics investigated with HOTINT
- Recent industrial applications
- Outlook on future developments

For details see: www.hotint.org

1 Alexander Humer, Johannes Gerstmayr: ECCOMAS Thematic Conference on Multibody Dynamics 2015, Barcelona, Spain
HOTINT - Yet another multibody simulation tool?

„History“ of HOTINT

„father“ of HOTINT:
Prof. Johannes Gerstmayr (full professor at university of Innsbruck) started the tool with his diploma thesis 1996

HOTINT Today

• Object-oriented multibody / mecha(tro)nic simulation software for
• Windows implemented in C++
• Focus: complex mechanics, deformable bodies, mechatronic systems
• Open-source software since 2013 (complete code available)
• Pre-compiled freeware version & installer (www.hotint.org)

For details see: www.hotint.org
HOTINT - Basics

• Redundant coordinate formulation: bodies & constraints
• Object-oriented:
 ➢ Each component (rigid body, solid/beam/shell element, connector, IO-Element, . . .) is represented by an element object
 ➢ Elements contribute equations (ODEs, algebraic) to multibodysystem (object based model denition)
 ➢ Service objects: loads, nodes, sensors, . . .
• Synthesis of rigid & flexible members: merge MBS & FE
• Modularity: independent core modules implemented as libraries
 ➢ HOTINT kernel, object libarary, numerical solvers, math libararies, GUI, script parser, etc.
• Efficient model setup & manipulation: GUI & script language
• Open-source framework: designed for efficient development

For details see: www.hotint.org
HOTINT – Numerical Solver

• Three basic computations modes (sparse & full matrices):
 ➢ Static analysis: Newton solver, fixed-point, return-mapping, etc.
 ➢ Dynamic solver for DAEs: general implicit Runge-Kutta schemes
 (acronym: High-Order Time INTegration)
 ➢ Eigenvalue problems: direct & iterative solvers

• Optimization & parameter identification: genetic algorithm
• Automated parameter variation & sensitivity analysis

For details see: www.hotint.org
HOTINT – Scientific Topics

- Structural mechanics: Large deformation beam elements
- Modal reduction: Generalized Component Mode Synthesis
- Fluid-Structure Interaction: SPH & co-simulation

Structural mechanics:

Absolute Nodal Coordinate Formulation (ANCF)

- Orientation of cross-sections represented by slope vectors
- Large deformation beam and shell elements

For details see: www.hotint.org
Modal reduction: Generalized Component Mode Synthesis (GCMS)

- Modal reduction based on components modes
- Rigid-body motion and flexible deformation relative to inertial frame

\[\mathbf{u} = \mathbf{u}_t + (\mathbf{A} - \mathbf{I}) \mathbf{x} + \mathbf{u}_f \]

Key ingredients of GCMS:

- Co-rotationally linearized strain tensor
- Linear configuration space

\[\mathbf{u}(\mathbf{x}, t) = \mathbf{N}(\mathbf{x})\mathbf{q}(t) \]

- Appropriate shape functions for rotational motion and flexible deformation

For details see: www.hotint.org
Modal reduction: Generalized Component Mode Synthesis (GCMS)

Equations of motion in GCMS:

\[M\ddot{q} + K q_{\text{flex}} + f_{n1}(q) + \left(\frac{\partial C}{\partial q} \right)^T \lambda = f_{\text{ext}} \]

\[K = A_{bd}K_{\text{red}}A_{bd}^T, \quad f_{n1} = \sum_{i,j=1}^{3} (q_{\text{flex}})^T A_{bd}K_{\text{red}} \frac{\partial A_{bd}^T}{\partial A_{ij}} q_{\text{flex}} \frac{\partial A_{ij}}{\partial q} \]

- Constant mass matrix, no gyroscopic terms
- Co-rotated but otherwise constant stiffness matrix & computationally inexpensive non-linear term
- However, 9 generalized coordinates per local mode shape

For details see: www.hotint.org
Fluid-Structure Interaction: Smoothed Particle Hydrodynamics (SPH)

- Particles represent fluid domain ⇒ Lagrangian, meshless approach
- Non-conventional CFD: changing fluid domains, free surface, . . .
- Partitioned approach: solid (HOTINT) ⇔ Fluid (LIGGGHTS)
- Force-displacement coupling: via surface mesh
- Co-simulation: data exchange via TCP/IP

HOTINT – Scientific Topics close to Industry (1)

Fluid-Structure Interaction: Smoothed Particle Hydrodynamics (SPH)

- HOTINT: implicit solver, large timesteps
- LIGGGHTS: fully parallelized, explicit solver
- General purpose interface design
- Coupling realized for: rigid bodies, structural elements, solid-finite elements, modally reduced MBS, . . .
HOTINT – Scientific Topics close to Industry (1)
HOTINT – Industrial Application (1)

Desing and Simulation Tool for large Power Transformers

- Modeling and simulation of transformer core
 - Core sheets in frictional contact! compression essential
 - Homogenized material model of core sheets in frictional contact

- Tool for tank design and peripherals (radiators . . .)
 - ANCF plate and beam elements

- Layout of reinforcements
- Earthquake loads on pipes
Sheet Metal Forming

- Optimization of an automatic sheet panel bender
- Complex simulation model (total machine, process)
- Model reduction strategies
- Highly nonlinear: large deformations, plasticity, contact
- Automatic identification of material properties (online)
 - Adaptive fully automated one piece flow production

source: http://www.salvagninigroup.com
Summary

• Mechatronics is not an industrial branch but a scientific discipline

• However, Mechtronics is a fundamental basis for many engineering activities in industry

• Therefore Mechatronics is bridging Science and Industry by its nature

• Furthermore, Mechatronics is bridging many industrial sectors/branches due to its technological approach

• Example of Software tool HOTINT was shown to demonstrate this
Thank you for your kind attention

Linz Center of Mechatronics GmbH
Altenberger Straße 69, A-4040 Linz